徐波,刘成林,曾毅.类脑智能研究现状与发展思考[J].中国科学院院刊,2016,31(7):793-802.

类脑智能研究现状与发展思考

Research Status and Developments of Brain-inspired Intelligence
作者
徐波
中国科学院自动化研究所 北京 100190;中国科学院脑科学与智能技术卓越创新中心 上海 200031
Xu Bo
Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China;Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
刘成林
中国科学院自动化研究所 北京 100190;中国科学院脑科学与智能技术卓越创新中心 上海 200031
Liu Chenglin
Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China;Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
曾毅
中国科学院自动化研究所 北京 100190;中国科学院脑科学与智能技术卓越创新中心 上海 200031
Zeng Yi
Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China;Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
中文关键词
         类脑智能;人工神经网络;记忆;注意和推理;脉冲神经网络;多脑区协同;自主学习
英文关键词
        brain-inspired intelligence;artificial neural networks;memory;attention and reasoning;spiking neural networks;multiple brain region coordination;autonomous learning
中文摘要
        近年来人工智能研究的许多重要进展反映了一个趋势:来自脑科学的启发,即使是局部的借鉴都能够有效地提升现有人工智能模型与系统的智能水平。然而,想要真正逼近乃至超越人类水平的人工智能,还需要对脑信息处理机制更为深入的研究和借鉴。类脑智能研究的目标就是通过借鉴脑神经结构及信息处理机制,实现机制类脑、行为类人的下一代人工智能系统。文章从受脑启发的新一代人工神经网络、基于记忆、注意和推理的认知功能模型、基于生物脉冲神经网络的多脑区协同认知计算模型等角度,并结合研究团队在类脑智能领域的研究进展,论述类脑智能的研究进展、发展方向和对未来发展的思考。
英文摘要
        Recent advances in Artificial Intelligence (AI) have manifested an important trend, namely, inspirations from brain science can significantly improve the level of intelligence for AI computational models. With only local and partial inspirations from the brain, great advancements have been achieved. Nevertheless, deeper investigations and inspirations from the brain are needed to realize and exceed humanlevel intelligence. The ultimate goal of brain-inspired intelligence is to bring inspirations from brain structures and information processing mechanisms to brain-inspired cognitive computational models, so as to realize next-generation artificial intelligence models and systems with general intelligence. In this article, we review recent advances and discuss trends of brain-inspired computational models, including new models of artificial neural networks, and cognitive computation models. We also briefly introduce the research of brain-inspired cognitive computation models and methods supported by the strategic priority research project of Chinese Academy of Sciences.
DOI10.16418/j.issn.1000-3045.2016.07.008
作者简介
徐波 中科院自动化所所长、研究员,中科院脑科学与智能技术卓越创新中心副主任,中国中文信息学会副理事长。曾任国家"863"计划信息技术领域专家组专家。长期从事人工智能研究,主要研究领域包括:类脑智能、类脑认知计算模型、自然语言处理与理解、类脑机器人。E-mail:xubo@ia.ac.cn
微信关注公众号